高考数学核心考点精析
【来源:易教网 更新时间:2025-07-22】
篇1:高考数学核心考点精析
高考数学必考考点总结
对于很多高考数学成绩差的学生来说,学习高考数学就是一种折磨。下面有途网小编很大家分享了高考数学必备知识点,欢迎阅读。
高考数学必备知识点
函数的单调性
它是一个区间概念,即函数的单调性是针对定义域内的区间而言的。方法如下:
1、作差(商)法(定义法)
2、导数法
3、复合函数单调性判别方法(同增异减)
经典高考数学知识点
数量积与两个实数乘积的区别:
在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出.
已知实数,且,则a=c,但在向量的数量积中没有.
在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量.
高三必备高考数学知识点
在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).
通径是抛物线的所有焦点弦中最短的弦.(想一想在双曲线中的结论?)
高考数学知识点总结
正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?
三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?
在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?
你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)
篇2:高考数学核心考点精析
高考数学必考考点汇总
距离高考还要不到一个月的时间,最后的阶段不知道考生们做好了前往高考战场的准备了没有,高考数学是一大关,为了让考生们能够在高考数学考试中多得分,得高分,有途网小编特在下文给大家整理了高考数学必考考点汇总,仅供大家参考,同时也预祝各位考生在高考中都取得自己理想的成绩!
就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤
⒈建立适当的坐标系,设出动点M的坐标;
⒉写出点M的集合;
⒊列出方程=0;
⒋化简方程为最简形式;
⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一般步骤
①建系——建立适当的坐标系;
②设点——设轨迹上的任一点P(x,y);
③列式——列出动点p所满足的关系式;
④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
⑤证明——证明所求方程即为符合条件的动点轨迹方程。
1.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。
2.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?
3.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见
4.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大.
5.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法.
6.异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。
7.你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?
8.两条异面直线所成的角的范围:0°<α≤90°
直线与平面所成的角的范围:0o≤α≤90°
二面角的平面角的取值范围:0°≤α≤180°
9.你知道异面直线上两点间的距离公式如何运用吗?
10.平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”。
11.立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?
12.棱柱及其性质、平行六面体与长方体及其性质.这些知识你掌握了吗?(注意运用向量的方法解题)
篇3:高考数学核心考点精析
高考数学常见易错考点总结
高考数学是十分容易失分的科目,下面有途网小编跟大家分享一下高考数学易错考点,希望对你有帮助。
高考数学常见易错考点
1.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?
2.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)
3.反正弦、反余弦、反正切函数的取值范围分别是
4.你还记得某些特殊角的三角函数值吗?
5.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?
高考数学易错易混考点
1.数量积与两个实数乘积的区别:
在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出.
已知实数,且,则a=c,但在向量的数量积中没有.
在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量.
2.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。
3.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?
4.用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。
5.直线的倾斜角、到的角、与的夹角的取值范围依次是。
高考数学需要注意的易错点
1.你掌握了三种常见的概率公式吗?(①等可能事件的概率公式;②互斥事件有一个发生的概率公式;③相互独立事件同时发生的概率公式.)
2.二项式展开式的通项公式、n次独立重复试验中事件A发生k次的概率易记混。
通项公式:它是第r+1项而不是第r项;
事件A发生k次的概率:.其中k=0,1,2,3,…,n,且0
3.求分布列的解答题你能把步骤写全吗?
4.如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义.)
5.你还记得一般正态总体如何化为标准正态总体吗?(对任一正态总体来说,取值小于x的概率,其中表示标准正态总体取值小于的概率)
秒杀高考数学选择题技巧
1.特值检验法:对于具有一般性的高考数学选择题问题,我们在解高考数学选择题题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
2.极端性原则:将所要研究的高考数学选择题问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决高考数学选择题。
3.剔除法:利用已知条件和选择支所提供的信息,从高考数学选择题四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
篇4:高考数学核心考点精析
集合与简单逻辑
1 易错点 遗忘空集致误
错因分析:由于空集是任何非空集合的真子集,因此,对于集合B,就有B=A,φ≠B,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了 B≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。
22易错点 忽视集合元素的三性致误
错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。
3易错点 四种命题的结构不明致误
错因分析:如果原命题是“若 A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。
这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。
另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a ,b都是奇数”。
4易错点 充分必要条件颠倒致误
错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。
5 易错点 逻辑联结词理解不准致误
错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:
p∨q真<=>p真或q真,
p∨q假<=>p假且q假(概括为一真即真);
p∧q真<=>p真且q真,
p∧q假<=>p假或q假(概括为一假即假);
┐p真<=>p假,┐p假<=>p真(概括为一真一假)。
函数与导数
6 易错点 求函数定义域忽视细节致误
错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。
在求一般函数定义域时要注意下面几点:
(1)分母不为0;
(2)偶次被开放式非负;
(3)真数大于0;
(4)0的0次幂没有意义。
函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。
7 易错点 带有绝对值的函数单调性判断错误
错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:
一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;
二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。
对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
8 易错点 求函数奇偶性的常见错误
错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。
在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。
9易错点 抽象函数中推理不严密致误
错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。
解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。
抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。
10易错点 函数零点定理使用不当致误
错因分析:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。
函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”,函数的零点定理是“无能为力”的,在解决函数的零点时要注意这个问题。
11易错点 混淆两类切线致误
错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此求解曲线的切线问题时,首先要区分是什么类型的切线。
12 易错点 混淆导数与单调性的关系致误
错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。
研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。
13 易错点 导数与极值关系不清致误
错因分析:在使用导数求函数极值时,很容易出现的错误就是求出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点。
出现这些错误的原因是对导数与极值关系不清。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,在此提醒广大考生在使用导数求函数极值时一定要注意对极值点进行检验。

篇5:高考数学核心考点精析
函数的零点
(1)定义:
对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.
(2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系:
方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点.
(3)函数零点的判定(零点存在性定理):
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.
典型例题1:
2
二二次函数y=ax2+bx+c(a>0)的图象与零点的关系
典型例题2:
3
三二分法
对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
1、函数的零点不是点:
函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标.
2、对函数零点存在的判断中,必须强调:
(1)、f(x)在[a,b]上连续;
(2)、f(a)·f(b)<0;
(3)、在(a,b)内存在零点.
这是零点存在的一个充分条件,但不必要.
3、对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号.典型例题3:
利用函数零点的存在性定理判断零点所在的区间时,首先看函数y=f(x)在区间[a,b]上的图象是否连续不断,再看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点.
4
四判断函数零点个数的常用方法
1、解方程法:
令f(x)=0,如果能求出解,则有几个解就有几个零点.
2、零点存在性定理法:
利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点.
3、数形结合法:
转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数.
典型例题4:
已知函数有零点(方程有根)求参数取值常用的方法
1、直接法:
直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.
2、分离参数法:
先将参数分离,转化成求函数值域问题加以解决.
3、数形结合法:
先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.
篇6:高考数学核心考点精析
关注核心考点非常重要,核心考点一个是九大核心的知识点,函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。这些内容非常重要。当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。
再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。而文科呢?椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。这里需要有侧重点。
拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。这是从我们的一个角度来说。
我们后面有六个大题,一般是侧重于六个重要的板块,因为现阶段不可能一个章节从头至尾,你没有时间了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这肯定是重要板块。再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量肯定又是一个。再比如像立体几何当中的空间图形和平面图形,这肯定是重要板块。再后面是概率统计,在解决概率统计问题当中一般和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。
应当说我们后面六个大题基本上是围绕着这样六个板块来进行。这六个板块肯定是我们的核心内容之一。再比如说现在我们高考当中要体现对数学思想方法的考察,数学思想方法以前考察四个方面,函数和方程思想,数形结合思想,分类讨论,等价转换,现在又增加了三个,原来这四个方面当中有两类做了改造。函数和方程思想,数形结合思想,分类讨论改成了分类讨论与整合,等价转换转为划归与转化。有限和无限思想,特殊和一般的思想。
像北京往年考了一道题,一个班里面设计一个八边形的班徽,给了等腰三角形边长为一,现在让你考虑面积多大,按照常规说法,肯定需要考虑四个三角形面积,二分之一乘上一再乘上一,再乘上四,中间还是正方形,利用余弦定理求等腰三角形底边的平方就可以了,最后再一加就是我们要的面积。这个问题并不是很麻烦,不管怎么说肯定需要计算,你至少知道三角形面积怎么求,还得考虑余弦定理,再相加还有运算问题,说不定哪个地方没有记准,可能出现这样那样的问题。
篇7:高考数学核心考点精析
高考数学复习必背常见易错考点
对于很多高考数学成绩差的高中生来说,学习高考数学就是一种折磨。下面有途网小编很大家分享了高考数学必备知识点,欢迎阅读。
高考数学必备知识点
反函数 反函数定义:只有满足y x 唯一,函数)(xfy才有反函数。函数)(xfy的反函数记为)(1 yfx, 习惯上记为)(1 xf y . 在同一坐标系,函数)(xfy与它的反函数)(1 xf y的图象关于xy对称.
对于任意一个函数y=f(x)不一定有反函数。单调函数才具有反函数。但并非反函数存在时一定是单调的.因此,所有偶函数不存在反函数.
经典高考数学知识点
你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)
在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)
高三必备高考数学知识点
数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。
用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。
直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。
高考数学知识点总结
函数的图象的平移,方程的平移以及点的平移公式易混:
(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即.
(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为,即.
(3)点的平移公式:点按向量平移到点,则.
篇8:高考数学核心考点精析
高考数学常见易错考点最全归纳
对于很多高考数学成绩差的学生来说,学习高考数学就是一种折磨。下面有途网小编很大家分享了高考数学必备知识点,欢迎阅读。
高考数学必备知识点
函数f:A→B是特殊的映射
(1)、特殊在定义域A和值域B都是非空数集。函数y=f(x)是“y是x的函数”这句话的数学表示,其中x 是自变量,y是自变量x的函数,f是表示对应法则,它可以是一个解析式,也可以是表格或图象,也有只能用文字语言叙述.由此可知函数图像与x轴至多有一个公共点,但与y轴的公共点可能没有,也可能是任意个。
(2)、函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数。
经典高考数学知识点
解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.
在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.
高三必备高考数学知识点
在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
高考数学知识点总结
数量积与两个实数乘积的区别:
在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出.
已知实数,且,则a=c,但在向量的数量积中没有.
在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量.

篇9:高考数学核心考点精析
理科数学高考试题
如何考查能力在考查知识点的同时,进行能力的检测,是广东高考数学科命题的方向。那么高考是怎么进行能力的考查的?下面我们举例说明。
模块整合试题
考查综合分析问题的能力
新课程标准的教材是按照不同模块来编排的,这样就打破了原来教材的编排顺序,各个模块之间既相对独立又同属于一个完整的知识体系,模块之间相互交叉渗透。相对于原来版本的教材,知识的体系显得松散了一些。例如:立体几何分布在两个不同的模块必修2以及选修2-1中,解析几何也存在类似的问题,新增的内容概率与统计也是分两个不同的模块来进行学习的。将不同模块的内容整合在一道题目中,这是近三年广东高考理科数学试题最显著的特点,相信在的试题中依然会延续这种风格。下面通过例题来分析这种整合是怎么进行的;面对这样的题目又该怎么去寻求解题对策。
鼓励多想少算
考查数学思维能力
数学是思维的科学,运算技能是数学思维技能的一部分,但不是最核心的部分。解数学题固然离不开运算,但是倘若运算量过大,那么繁杂的运算势必冲淡思维过程。有的题目一看就知道怎么做,接下来就是大量的计算,广东高考理科数学就很少考这样的题目,而是尽量减少运算的复杂程度,腾出空间来让学生思考,以考查学生的思维水平。
常考常新
不回避重点知识与数学思想
不刻意追求知识点的覆盖率,不回避重点知识的考查,关注重要的数学思想方法。这是近年理科数学高考试卷的又一特点。那重点知识和重要方法是什么?
重点知识,是那些在整个高中数学知识体系中的主干知识,包括函数、代数、不等式、三角函数、数列、平面向量、立体几何、解析几何、概率统计等;
重要方法,就是在学生数学思维发展过程中起到“推波助澜”作用的思想与方法,包括函数与方程思想、数形结合思想、化归与转化思想、分类讨论思想等。
将这些知识点与思想方法以各种不同的层次融入试题中,设计成新颖的数学试题,通过考生对数学思想方法的直觉运用来对考生的数学能力进行区分,使整个试卷显得“骨骼强大”、“肌肉丰满”。在这里命制的题目一般都是所谓的压轴题。
对于我们考生来说,怎么解决这些压轴问题?有没有一些合理的“套路”?或者是“久试不衰”的办法?我们把广东高考理科这三年的压轴题目做如下归类:含参数的压轴题、拼盘式的压轴题和深入型的压轴题。
语言转换
进行数学素养的考查
与语文一样,数学学科也有阅读,只不过数学阅读一般是通过语言转换来实现的。数学语言主要有三种:自然语言(文字语言)、符号语言、图形语言。这是一种简约的语言,学生的数学语言能力与数学学习的成绩存在着一定的相关性。此外,数学语言也是人类进行交流的工具,因此能否应用这种语言进行沟通就是检测具备数学基本素养的手段之一。此题目在考查空间直线与平面的位置关系的同时,也在考查考生的语言应用能力。题目中给出的都是自然语言,我们只要绘出相应的图,即把自然语言转换成图形语言,再配合适当的反例即可。有的同学反映立体几何很难学,其实主要的原因是没有针对性的训练语言的转换能力。广东高考理科试题明显加强了这方面的考查,测试结果肯定不尽如人意,预测将继续增加考试力度,同学们应该有一些针对性的训练。
稳中求变
选考内容的考查
关于“自由选考内容”,明年的理科数学将与文科数学一样,选做题目为“二选一”,考生需要在“参数方程与极坐标、几何证明选讲”两题目中任选一题来解答。解答参数方程、极坐标系题目的基本思路应该是"转化",即转化成普通方程(直角坐标系方程)再行解决。不等式选讲主要集中在含绝对值不等式的解法,大都可以采取“零点分段”来求得解集。考生在继续关注前三年考点的基础上,适当重视一些还未曾出现的知识点,例如椭圆、双曲线、抛物线的参数方程,压缩变换以及柱坐标系、球坐标系等等。每年的考生大多选做几何证明选讲,其实这是很明智的选择,毕竟这个考点所涉及的内容很贴近考生的实际。但是不能打无准备之仗,建议平时多解答一些关于几何证明选讲的习题,重点放在平行线成比例以及圆中的比例线段上。(教育部华南师范大学基础教育课程研究中心 编 广东教育出版社)
相关文章
高考数学必考知识点专项过关检测
高考数学试题新政策
备战高考:数学难点重点精讲
届高考数学突破140分难点训练(4篇)
篇10:高考数学核心考点精析
排列组合篇
1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5. 了解随机事件的发生存在着规律性和随机事件概率的意义。
6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8. 会计算事件在n次独立重复试验中恰好发生k次的概率。
导数应用篇
1. 导数概念的理解。
2. 利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3. 要能正确求导,必须做到以下两点:
(1). 熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2) 对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
数列问题篇
1. 在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
2. 在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3. 培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法。
立体几何篇
1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2. 判定两个平面平行的方法:
(1)根据定义--证明两平面没有公共点;
(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;
(3)证明两平面同垂直于一条直线。
解析几何(圆锥曲线)
1. 很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;
2. 演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。
篇11:高考数学核心考点精析
一、集合与函数
1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。
2.在应用条件时,易A忽略是空集的情况
3.你会用补集的思想解决有关问题吗?
4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
5.你知道“否命题”与“命题的否定形式”的区别。
6.求解与函数有关的问题易忽略定义域优先的原则。
7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。例如:。
10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法
11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。
12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题)。这几种基本应用你掌握了吗?
14.解对数函数问题时,你注意到真数与底数的限制条件了吗?
(真数大于零,底数大于零且不等于1)字母底数还需讨论
15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
二、不等式
18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”。
19.绝对值不等式的解法及其几何意义是什么?
20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”。
22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。
23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a》b》0,a
三、数列
24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?
25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?
27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)
28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
四、三角函数
29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?
30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?
31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?
32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角。异角化同角,异名化同名,高次化低次)
33.反正弦、反余弦、反正切函数的取值范围分别是
34.你还记得某些特殊角的三角函数值吗?
35.掌握正弦函数、余弦函数及正切函数的图象和性质。你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?
36.函数的图象的平移,方程的平移以及点的平移公式易混:
(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即。
(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为,即。
(3)点的平移公式:点按向量平移到点,则。
37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)
38.形如的周期都是,但的周期为。
39.正弦定理时易忘比值还等于2R.
五、平面向量
40.数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。
41.数量积与两个实数乘积的区别:
在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出。
已知实数,且,则a=c,但在向量的数量积中没有。
在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量。
42.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。
六、解析几何
43.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?
44.用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。
45.直线的倾斜角、到的角、与的夹角的取值范围依次是。
46.定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?
47.对不重合的两条直线
(建议在解题时,讨论后利用斜率和截距)
48.直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。
49.解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达。(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列平行线,找到并求出最优解⑦应用题一定要有答。)
50.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?
51.圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?
52.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?
53.通径是抛物线的所有焦点弦中最短的弦。(想一想在双曲线中的结论?)
54.在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。(求交点,弦长,中点,斜率,对称,存在性问题都在下进行)。
55.解析几何问题的求解中,平面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?
七、立体几何
56.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。
57.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?
58.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见
59.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大。
60.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。
61.异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。
62.你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?
63.两条异面直线所成的角的范围:0°《α≤90°
直线与平面所成的角的范围:0o≤α≤90°
二面角的平面角的取值范围:0°≤α≤180°
64.你知道异面直线上两点间的距离公式如何运用吗?
65.平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”。
66.立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?
67.棱柱及其性质、平行六面体与长方体及其性质。这些知识你掌握了吗?(注意运用向量的方法解题)
68.球及其性质;经纬度定义易混。经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式。这些知识你掌握了吗?
八、排列、组合和概率
69.解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。
解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法。
70.二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。二项式系数最大项与展开式中系数最大项易混。二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r.
71.你掌握了三种常见的概率公式吗?(①等可能事件的概率公式;②互斥事件有一个发生的概率公式;③相互独立事件同时发生的概率公式。)
72.二项式展开式的通项公式、n次独立重复试验中事件A发生k次的概率易记混。
通项公式:它是第r+1项而不是第r项;
事件A发生k次的概率:。其中k=0,1,2,3,…,n,且0
73.求分布列的解答题你能把步骤写全吗?
74.如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义。)
75.你还记得一般正态总体如何化为标准正态总体吗?(对任一正态总体来说,取值小于x的概率,其中表示标准正态总体取值小于的概率)
九、导数及其应用(上海高考不要求)
76.在点处可导的定义你还记得吗?它的几何意义和物理意义分别是什么?利用导数可解决哪些问题?具体步骤还记得吗?
77.你会用“在其定义域内可导,且不恒为零,则在某区间上单调递增(减)对恒成立。”解决有关函数的单调性问题吗?
78.你知道“函数在点处可导”是“函数在点处连续”的什么条件吗
篇12:高考数学核心考点精析
高考经常出的数学题型有什么?高考数学核心考点精析有哪些?
如今的高考,考的并不是谁的逻辑思维强,也不是谁的基础知识强;而是在考谁能最快、最准做出题来,得更多的分,可见掌握应试教育的技巧是多么的重要。如果为高考划定了学习范围,以便于熟悉高考数学核心考点精析,高考数学也许会得到更高的分。小编整理了今年来高考的数学的考点。希望对大家有所帮助。
高考数学核心考点精析(1)
解方程组,解不等式组,化简,分解因式
考查了折线统计图,条形统计图圆形统计图的特点,以及中位数的概念和加权平均数的知识点进行补图,计算填空
游戏公平性问题,通过概率计算来进行比较,概率相等的公平,不等不公平
直角三角形的实际应用中的坡度坡角问题,难度不大,注意细心运算即可
高考数学核心考点精析(2)
考查不等式组在现实生活中的应用,通过运用数学模型,可使求解过程变得简单
主要考查对四边形的性质和判定,三角形的性质,判定等知识点的理解和掌握来求图形全等或线段相等,第二问先猜测再利用性质判断证明特殊图形
一次函数和二次函数结合求利润最大化问题(五年来全考这种题型还有一种题型是面积最大化,近几年没考)
高考数学核心考点精析(3)
创新性,找规律一般会先给出一部分,下边的通常换汤不换药,我们只需按照他的思路再稍加变通
动点问题,这里要做大量练习找思维方法又要注意知识的运用
根据题意列分式方程,其中找出方程的关键语,找出数量关系是解题的关键
高考数学核心考点精析(4)
用样本估计总体的知识或用总体估计样本,体现了统计思想,统计的思想就是用样本的信息来估计总体的信息(或选择或填空)
根据特殊图形的性质做题如13题查了等腰直角三角形的性质,平移的性质.关键是判断重叠部分图形为等腰直角三角形,利用等腰直角三角形的性质求斜边长,这要求把特殊图形的性质,判定定理记牢并灵活运用
根据题意找规律并写出推导公式,对于这类题一般是先从相邻两个图形的关系入手
以上就是小编为大家整理的高考数学核心考点精析,希望对大家有所帮助。

篇13:高考数学核心考点精析
1. 高中数学新增内容命题走向
新增内容:向量的基础知识和应用、概率与统计的基础知识和应用、初等函数的导数和应用。
命题走向:试卷尽量覆盖新增内容;难度控制与中学教改的深化同步,逐步提高要求;注意体现新增内容在解题中的独特功能。
(1)导数试题的三个层次
第一层次:导数的概念、求导的公式和求导的法则;
第二层次:导数的简单应用,包括求函数的极值、单调区间,证明函数的增减性等;
第三层次:综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式和函数的单调性等结合在一起。
(2)平面向量的考查要求
a.考查平面向量的性质和运算法则及基本运算技能。要求考生掌握平面向量的和、差、数乘和内积的运算法则,理解其直观的几何意义,并能正确地进行运算。
b.考查向量的坐标表示,向量的线性运算。
c.和其他数学内容结合在一起,如可和函数、曲线、数列等基础知识结合,考查逻辑推理和运算能力等综合运用数学知识解决问题的能力。题目对基础知识和技能的考查一般由浅入深,入手不难,但要圆满完成解答,则需要严密的逻辑推理和准确的计算。
(3)概率与统计部分
基本题型:等可能事件概率题型、互斥事件有一个发生的概率题型、相互独立事件的概率题型、独立重复试验概率题型,以上四种与数字特征计算一起构成的综合题。
复习建议:牢固掌握基本概念;正确分析随机试验;熟悉常见概率模型;正确计算随机变量的数字特征。
2. 高中数学的知识主干
函数的基础理论应用,不等式的求解、证明和综合应用,数列的基础知识和应用;三角函数和三角变换;直线与平面,平面与平面的位置关系;曲线方程的求解,直线、圆锥曲线的性质和位置关系。
3. 传统主干知识的命题变化及基本走向
(1)函数、数列、不等式
a.函数考查的变化
函数中去掉了幂函数,指数方程、对数方程和不等式中去掉了“无理不等式的解法、指数不等式和对数不等式的解法”等内容,这类问题的命题热度将变冷,但仍有可能以等式或不等式的形式出现。
b.不等式与递归数列的综合题解决方法
化归为等差或等比数列问题解决;借助教学归纳法解决;推出通项公式解决;直接利用递推公式推断数列性质。
c.函数、数列、不等式命题基本走向:创造新情境,运用新形式,考查基本概念及其性质;函数具有抽象化趋势,即通过函数考查抽象能力;函数、数列、不等式的交汇与融合;利用导数研究函数性质,证明不等式;归纳法、数学归纳法的考查方式由主体转向局部。
(2)三角函数
结合实际,利用少许的三角变换(尤其是余弦的倍角公式和特殊情形下公式的应用),考查三角函数性质的命题;与导数结合,考查三角函数性质及图象;以三角形为载体,考查三角变换能力,及正弦定理、余弦定理灵活运用能力;与向量结合,考查灵活运用知识能力。
(3)立体几何
由考查论证和计算为重点,转向既考查空间观念,又考查几何论证和计算;由以公式、定理为载体,转向对观察、实验、操作、设计等的适当关注;加大向量工具应用力度;改变设问方式。
(4)解析几何
a.运算量减少,对推理和论证的要求提高。
b.考查范围扩大,由求轨迹、讨论曲线本身的性质扩大到考查:曲线与点、曲线与直线的关系,与曲线有关的直线的性质;运用曲线与方程的思想方法,研究直线、圆锥曲线之外的其他曲线;根据定义确定曲线的类型。
c.注重用代数的方法证明几何问题,把代数、解析几何、平面几何结合起来。
d.向量、导数与解析几何有机结合。
4. 关注试题创新
(1)知识内容出新:可能表现为高观点题;避开热点问题、返璞归真。
a.高观点题指与高等数学相联系的问题,这样的问题或以高等数学知识为背景,或体现高等数学中常用的数学思想方法和推理方法。高观点题的起点高,但落点低,也就是所谓的“高题低做”,即试题的设计来源于高等数学,但解决的方法是中学所学的初等数学知识,所以并没将高等数学引进高中教学的必要。考生不必惊慌,只要坦然面对,较易突破。
b.避开热点问题、返璞归真:回顾近年来的试题,那些最有冲击力的题,往往在我们的意料之外,而又在情理之中。
(2)试题形式创新:可能表现为:题目情景的创设、条件的呈现方式、设问的角度改变等题目的外在形式。
另请注意:研究性课题内容与高考命题内容的关系、应用题的试题内容与试题形式。
(3)解题方法求新:指用新教材中的导数、向量方法解决旧问题。
5. 高考数学命题展望
主干内容重点考:基础知识全面考,重点知识重点考,淡化特殊技巧。
新增知识加大考:考查力度及所占分数比例会超过课时比例,将新增知识与传统知识综合考是趋势。
思想方法更深入:考查与数学知识联系的基本方法、解决数学问题的科学方法。
突出思维能力考核:主要考查学生空间想象能力、学习能力、探究能力、应用能力和创新能力。
在知识重组上做文章:注意信息的重组及知识网络的交叉点。
运算能力有所提高:淡化繁琐、强调能力,提倡学生用简洁方法得出结论。
空间想象能力平稳过渡:形式不会大变,但将向量作为工具来解立体几何是趋势。
实践应用能力进一步加强:从实际问题中产生的应用题是真正的应用题,而试题只是构建一种模式的是主干应用题。
考查创新学习能力:学生能选择有效的方法和手段,要有自己的思路,创造性地解决问题。
个性品质得以彰显。
- 周教员 新疆大学 会计
- 颜教员 海南大学 国际经济与贸易
- 努教员 海南大学 物理学
- 雷教员 新疆天山职业技术大学 建筑装饰工程
- 马教员 新疆大学 有机化学
- 杨教员 华中师范大学 数理统计
- 张教员 新疆医科大学 临床医学(“5 3”一体化)
- 段教员 新疆大学 数学与应用数学
- 王教员 新疆大学 数学专业

搜索教员